1 WYNTKA... Decibels

Every year dozens of students who should know much better lose a lot of exam marks because they haven't grasped the concept of the decibel. This is a great pity: a good understanding of the decibel is essential to just about any branch of electronic engineering.

To start with a definition: the decibel is ten times the logarithm (to the base 10) of a power ratio ${ }^{1}$. Remember that it's a power ratio, always a ratio of powers, and you won't go far wrong.

For example: suppose you had an amplifier with an input signal of 2 mW and an output power of 20 W . The power gain (usually just called the gain, or sometimes the linear gain to emphasise that the figure is not in decibels) is the output power divided by the input power:

$$
\begin{equation*}
\text { power gain }=\frac{\text { output power }}{\text { input power }}=\frac{20 \mathrm{~W}}{0.002 \mathrm{~W}}=10000 \tag{1.1}
\end{equation*}
$$

Since this is a ratio of two powers, we can also express it in dB :

$$
\begin{equation*}
\text { power gain in } \mathrm{dB}=10 \log _{10}\left(\frac{20}{0.002}\right)=10 \log _{10}(10000)=40 \mathrm{~dB} \tag{1.2}
\end{equation*}
$$

That's it. It's not difficult. However, there is a huge amount of confusion surrounding the use of the dB , most of which arises due to some short-cuts made by engineers in a particular field of electronics who do not always state all of their assumptions, and leave some things as ambiguous; but more about that later.

First some simple examples: it's very useful to know the corresponding values in dB and linear power ratios for some common cases: for example a factor of ten is a change in dB of 10 , and a factor of 2 is a change in dB of 3 (well, not exactly three, but it's a good enough approximation for just about all engineering purposes).

$$
\begin{align*}
& 10 \log _{10}(10)=10 \tag{1.3}\\
& 10 \log _{10}(2)=3.01 \tag{1.4}
\end{align*}
$$

Engineers often talk about a signal being ' 3 dB down' when they mean it's got half the power, and it's useful to know this without having to reach for your calculator. Similarly, ' 6 dB up' means four times the power, ' 9 dB up' is eight times the power, and so on.

Since dBs are logarithmic units, they behave just like logarithms: if you want to multiply two linear power ratios, you just add the dB together, if you want to divide two linear power ratios, you can just subtract the dB . For example, 7 dB is 10 dB minus 3 dB , and a subtraction in dBs is equivalent to a division in linear power ratios, and 10 dB is a factor of 10 and 3 dB is a factor of 2 , so 7 dB must be a linear factor of $10 / 2=5$. Which it is, almost (actually it's around 5.012, but the difference is rarely important.)

A few more examples:

[^0]| Linear Power Ratio | Power Ratio in dB |
| :---: | :---: |
| 1 | 0 dB |
| 0.1 | -10 dB |
| 0.01 | -20 dB |
| 10 | 10 dB |
| 100 | 20 dB |
| 1000 | 30 dB |
| 2 | 3 dB |
| 4 | 6 dB |
| 0.5 | -3 dB |

1.1 Using Voltage Ratios to Calculate dB

In some textbooks, you will see the gain in dB being calculated using a formula like this:

$$
\begin{equation*}
\text { gain }(\mathrm{dB})=20 \log _{10}\left(\frac{V_{\mathrm{out}}}{V_{\mathrm{in}}}\right) \tag{1.5}
\end{equation*}
$$

Be careful if you see this. It is common practice, but it can be misleading, as it is not always correct. It relies on the (often un-stated) assumption that the impedance in the circuit at the input and the output is the same.

Remember, a dB is always a power ratio. If all you've got is the voltage, then you need to calculate the power using:

$$
\begin{equation*}
\text { power in }=\frac{\left(V_{\mathrm{in}}\right)^{2}}{Z_{\text {in }}} \quad \text { power out }=\frac{\left(V_{\text {out }}\right)^{2}}{Z_{\text {out }}} \tag{1.6}
\end{equation*}
$$

In the most general case, when the input voltage has an impedance $Z_{\text {in }}$ and the output has an impedance $Z_{\text {out }}$, then the power gain can be expressed as:

$$
\begin{equation*}
\text { power gain }=\frac{\text { powerout }}{\text { power in }}=\frac{\left(V_{\text {out }}\right)^{2}}{Z_{\text {out }}} \div \frac{\left(V_{\text {in }}\right)^{2}}{Z_{\text {in }}}=\frac{\left(V_{\text {out }}\right)^{2}}{\left(V_{\text {in }}\right)^{2}} \frac{Z_{\text {in }}}{Z_{\text {out }}} \tag{1.7}
\end{equation*}
$$

Now if, and only if, the output impedance is equal to the input impedance, then we can write:

$$
\begin{equation*}
\text { power gain in } \mathrm{dB}=10 \log _{10} \frac{\left(V_{\text {out }}\right)^{2}}{\left(V_{\text {in }}\right)^{2}}=10 \log _{10}\left(\frac{V_{\text {out }}}{V_{\text {in }}}\right)^{2}=20 \log _{10}\left(\frac{V_{\text {out }}}{V_{\text {in }}}\right) \tag{1.8}
\end{equation*}
$$

But, and it's worth emphasising this point yet again, if the input impedance is not equal to the output impedance, then this simple formula gain $(\mathrm{dB})=20 \log _{10}\left(\mathrm{~V}_{\text {out }} / \mathrm{V}_{\text {in }}\right)$ is not valid. In the general case, we'd have to write:

$$
\begin{equation*}
\text { power gain } \mathrm{dB}=20 \log _{10}\left(\frac{V_{\mathrm{out}}}{V_{\mathrm{in}}}\right)-10 \log _{10}\left(\frac{Z_{\mathrm{out}}}{Z_{\mathrm{in}}}\right) \tag{1.9}
\end{equation*}
$$

In many cases in simple circuit analysis, the impedance at a certain point in the circuit is either not given, does not really exist (for example if the amplitude of a signal is stored as a digital number in a computer or DSP chip) or is not easily calculable. In these cases, the impedance is
often normalised to be one, and the $20 \log _{10}\left(\mathrm{~V}_{\text {out }} / \mathrm{V}_{\text {in }}\right)$ formula is used. It usually works, but don't forget about the exceptions.

$1.2 \mathrm{dBmW}, \mathrm{dB} \mu \mathrm{W}$, dBW, etc

$A d B$ is a unit of power ratio. If you want to express a real power in terms of $d B$, then you need some reference power to use, so the power can be expressed as a ratio with the reference power. For example, a real power of 30 W could be expressed as a power that is 30 times greater than a power of one watt. In these cases, where a reference unit of one watt is assumed, the result of the ratio is expressed in terms of the units of dBW.

$$
\begin{equation*}
\text { power } \mathrm{dBW}=10 \log _{10}\left(\frac{P(\mathrm{~W})}{1 \mathrm{~W}}\right)=10 \log _{10} P(\mathrm{~W}) \tag{1.10}
\end{equation*}
$$

where $P(\mathrm{~W})$ is the power of the signal expressed in Watts. For example, 100 Watts is 20 dBW , since $10 \log _{10}(100)=20$, and one milliwatt $(1 \mathrm{~mW})$ is -30 dBW , since $10 \log _{10}(0.001)=-30$. To calculate the power in dBW, just take 10 times the logarithm (to the base 10) of the ratio of the power to one Watt.

Some more examples: 2 W is $3 \mathrm{dBW}, 10 \mathrm{~W}$ is 10 dBW , and 500 mW is -3 dBW .
The reference power doesn't have to be one Watt (sometimes one Watt is a rather large power to use, and smaller units of power are more convenient). For example, if the reference power used is one microwatt, then the units become $\mathrm{dB} \mu \mathrm{W}$, and a power of 1 mW would be written as $30 \mathrm{~dB} \mu \mathrm{~W}$, since:

$$
\begin{equation*}
\text { power } \mathrm{dB} \mu \mathrm{~W}=10 \log _{10}\left(\frac{P}{10^{-6}}\right)=10 \log _{10}\left(\frac{10^{-3}}{10^{-6}}\right)=30 \mathrm{~dB} \mu \mathrm{~W} \tag{1.11}
\end{equation*}
$$

Similarly, using a reference power of 1 mW leads to the unit dBmW , and therefore:

$$
\begin{equation*}
1 \mathrm{~mW}=-30 \mathrm{dBW}=0 \mathrm{dBmW}=30 \mathrm{~dB} \mu \mathrm{~W} \tag{1.12}
\end{equation*}
$$

1.2.1 The dBm, dBu and $d B \mu$

At first sight these common units don't make any sense. A dB is a power ratio. A ' μ ' isn't a unit of power, it just means a factor of 10^{-6}, and ' m ' means 10^{-3}, and what is ' u ' about? While $d B m$ is usually shorthand for $d B m W$, if you thought that $d B \mu$ was just shorthand for $d B \mu W$, then in most cases you'd be wrong.

There are several different uses of the dBu or $\mathrm{dB} \mu$. Since occasionally the μ is written as a u (due to difficulties in writing Greek letters in some situations), often the only way you can tell what is meant is by context. For example:

1. Audio Engineering: 'dBu' means use as a reference power 0.775 V (rms) in an impedance of 600 ohms (a standard impedance used for audio work). So, in this case, the reference power is one milliwatt (since $0.775^{\wedge} 2 / 600=10^{-3}$).
2. Radio propagation/EMC: Here, ' $\mathrm{dB} \mu$ ' is most often used as a shorthand for $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$. It's impossible to define a reference power in this case although you can define a
reference power density (in Watts per square metre). In the case of free space, it corresponds to a power density of $2.6510^{-15} \mathrm{~W} / \mathrm{m}^{2}$.
3. Other fields: ' $\mathrm{dB} \mu$ ' is a shorthand for $\mathrm{dB} \mu \mathrm{W}$. In this case the reference power is one microwatt.

It is confusing. But if you remember that a dB is always calculated using a power ratio, you should be fine - you just have to know / remember / work out what the reference power is in each case.

1.3 Using dB

If the decibel is so confusing, why does anyone bother using them? The answer is that they make calculations much easier by allowing multiplications and divisions to be replaced by additional and subtractions. Before the days of pocket calculators that made a lot of difference, and it's still easier to add and subtract in your head than to multiply and divide.

It's also convenient to be able to express a very wide range of possible values without having to use exponents, or a large number of zeros after the decimal points. (It's very easy to miscount the number of zeros in a large number, and that could be disastrous.)

Many formulas can be expressed conveniently in terms of dB by taking the logarithm of the formula and multiplying by ten. For example, consider the formula for the received power into a matched receiver for a radio link in free space:

$$
\begin{equation*}
P_{r}=\frac{P_{t} G_{t} G_{r}}{(4 \pi d / \lambda)^{2}} \tag{1.13}
\end{equation*}
$$

where P_{r} is the received power, P_{t} is the transmitted power, G_{t} and G_{r} are the gains of the transmit and receive antennas, d is the distance between the antennas and λ is the wavelength. Take ten times the logarithm (to the base ten) of this equation, and we get:

$$
\begin{equation*}
10 \log _{10}\left(P_{r}\right)=10 \log _{10}\left(P_{t}\right)+10 \log _{10}\left(G_{t}\right)+10 \log _{10}\left(G_{r}\right)-20 \log _{10}(4 \pi d / \lambda) \tag{1.14}
\end{equation*}
$$

If the transmit power P_{t} and receive power P_{r} are given in Watts, then we can write this as:

$$
\begin{equation*}
P_{r}(\mathrm{dBW})=P_{t}(\mathrm{dBW})+G_{t}(\mathrm{~dB})+G_{r}(\mathrm{~dB})-20 \log _{10}(4 \pi d / \lambda) \tag{1.15}
\end{equation*}
$$

Specifying the gains of the antennas in decibels, and the transmitted and received powers in dBW saves a lot of multiplication and division, replacing these operations with additions and subtractions, and speeding up the calculations significantly.

Note that the power transmitted and power received are expressed in terms of dBW, but the gains of the antennas are expressed in terms of dB. Since antenna gains are defined in terms of the ratio of two powers (the power in a given direction divided by the power that would have been transmitted in this direction by an omnidirectional antenna), this is fine - we don't need a reference power for a simple gain.

Note that we could equally well have written:

$$
\begin{equation*}
P_{r}(\mathrm{~dB} \mu \mathrm{~W})=60+P_{t}(\mathrm{dBW})+G_{t}(\mathrm{~dB})+G_{r}(\mathrm{~dB})-20 \log _{10}(4 \pi d / \lambda) \tag{1.16}
\end{equation*}
$$

since $60 \mathrm{~dB} \mu \mathrm{~W}=0 \mathrm{dBW}$, and $60+P_{t} \mathrm{dBW}=P_{t} \mathrm{~dB} \mu \mathrm{~W}$. Similarly:

$$
\begin{equation*}
P_{r}(\mathrm{~dB} \mu \mathrm{~W})=30+P_{t}(\mathrm{dBmW})+G_{t}(\mathrm{~dB})+G_{r}(\mathrm{~dB})-20 \log _{10}(4 \pi d / \lambda) \tag{1.17}
\end{equation*}
$$

since $30+P_{t} \mathrm{dBW}=P_{t} \mathrm{dBmW}$.

1.3.1 Adding dB

Adding two quantities in dB is done all the time, this just results in another quantity also in dB . Adding one quantity in dB to one quantity in dBm is also very common, and results in another quantity also in dBm . Adding two quantities in dBm is extremely rare, and if you find yourself doing this, you are almost certainly doing something wrong.

Why? Remember that a dB is a power ratio, it doesn't have any dimensions. It's used to express the gain of a system - the ratio of the output power to the input power. And since decibels are logarithmic quantities, adding two decibels is effectively multiplying the two power gains together:

$$
\begin{equation*}
10 \log _{10}\left(G_{1} \times G_{2}\right)=10 \log _{10}\left(G_{1}\right)+10 \log _{10}\left(G_{2}\right) \tag{1.18}
\end{equation*}
$$

For example: you have two amplifiers, one with a gain of $10(10 \mathrm{~dB})$ and another with a gain of two (3 dB). You put them in series, what is the total gain of the combined two-stage amplifier?

$$
\begin{align*}
\text { Linear Power Gain } & =10 \times 2=20 \\
\text { Power Gain }(\mathrm{dB}) & =10 \log _{10}(10 \times 2) \\
& =10 \log _{10}(10)+10 \log _{10}(2) \tag{1.19}\\
& =10 \mathrm{~dB}+3 \mathrm{~dB} \\
& =13 \mathrm{~dB}
\end{align*}
$$

All you have to do is add the gains in dB of the two stages to get the total gain. The same is true for any number of stages of amplification: just add all the gains of the individual stages in dB.

1.3.2 \quad Adding $d B$ and $d B m$

What about adding quantities in dBm ? Adding one quantity in dBm to another in dB is equivalent to multiplying a power by a gain: remember dB are logarithmic, so adding them together is equivalent to multiplying the linear quantities, and a dBm is a power, whereas a dB is just a gain. Multiplying a power by a gain is a very common thing to want to do - this is how to find out how much power is coming out of a system with a particular gain.

For example, consider you have a 10 W signal, and it's being input into a system with a power gain of 0.01 (in other words only 1% of the power comes out). How much power comes out? In linear units, all you do is multiply the input power with the power gain:

$$
\begin{equation*}
\text { Output Power }=10 \times 0.01=0.1 \mathrm{~W} \tag{1.20}
\end{equation*}
$$

Working in dB , this becomes:

$$
\begin{align*}
10 \log _{10}(\text { Output Power }) & =10 \log _{10}(10 \times 0.01) \\
& =10 \log _{10}(10)+10 \log _{10}(0.01) \tag{1.21}\\
& =10 \mathrm{dBW}+(-20 \mathrm{~dB}) \\
& =-10 \mathrm{dBW}
\end{align*}
$$

In other words, you just add the input power in dBW to the gain in dB , and you get the output power in dBW.

What about adding two quantities both in dBW , or one quantity in dBW with another in dBm ? This is much more rarely done. Anything expressed in dBW or dBm is a power, and adding them together would be the equivalent of multiplying two powers together, which would give a result with units of watts-squared. It is difficult to express that using dB. If you find yourself having to multiply two powers together, it's usually better not to use dB .

It's a useful rule: if you find you are adding two quantities both expressed in dBW, you are probably doing something wrong: make sure you really want to multiply two powers.

1.3.3 Adding Powers in dBm

Suppose you have two powers both expressed in dBm , and you want to know what the total power is. How do you do that? Answer: you have to convert the powers to mW , then add them up, then convert the answer back into dBm. It's long-winded, but there's no other way to do it.

This is a common mistake: for example what do you get if you have a 20 dBm signal, and you add 20 dBm of noise power? What is the total power? The answer is 23 dBm , since:

$$
\begin{align*}
\text { Total Power }(\mathrm{mW}) & =10^{(20 / 10)}+10^{(20 / 10)} \\
& =100+100 \tag{1.22}\\
& =200 \mathrm{~mW} \\
\text { Total Power }(\mathrm{dBm}) & =10 \log _{10}(200) \tag{1.23}\\
& =23 \mathrm{dBm}
\end{align*}
$$

(The answer is definitely not 40 dBm . That would be the equivalent of saying that a 100 mW signal plus another 100 mW signal had a power of 10 watts. You can get the answers very badly wrong if you get this wrong.)

1.3.4 Multiplying and Dividing Quantities in $d B$ and dBm

In general, don't do it! You're almost certainly doing something wrong ${ }^{2}$. Since decibels are logarithmic quantities, multiplying them together is the equivalent to raising to the power of

[^1]another, or taking the $\mathrm{n}^{\text {th }}$ root of a power. I can't think of many situations in which anyone would want to do that.

If in any doubt, take the quantities out of dB , then do the calculations, then put the answer back into dB (or dBm, dBW or whatever). It's takes longer, but it's safer (and sometimes there is no alternative).

1.4 Some Examples

1) An amplifier has a power input of 2 Watts, and an output power of 8 Watts. What is the gain in dB?

$$
10 \log _{10}\left(\frac{8}{2}\right)=10 \log _{10}(4)=6.02 \mathrm{~dB}
$$

In practice, it's usually just quoted as 6 dB . This is a very useful thing to know - a factor of two in power is 3 dB , a factor of four in power is 6 dB , a factor of eight in power is 9 dB , etc. This is accurate enough for most purposes.
2) An amplifier has a voltage input of 2 Volts, and an output voltage of 8 Volts. What is the gain in dB ?

The simple answer is: it's impossible to tell. You are not told what the input and output impedances are, so you can't tell what the input power or output power are.
3) An amplifier has a voltage input of 3 Volts with an 50 -ohm impedance, and supplies an output voltage of 4 Volts into a 100 -ohm impedance. What is the gain in dB ?

$$
10 \log _{10}\left(\frac{P_{\text {out }}}{P_{\text {in }}}\right)=10 \log _{10}\left(\frac{V_{\text {out }}{ }^{2}}{R_{\text {out }}} \frac{R_{\text {in }}}{V_{\text {in }}{ }^{2}}\right)=10 \log _{10}\left(\frac{4^{2}}{100} \frac{50}{3^{2}}\right)=-0.51 \mathrm{~dB}
$$

Note that even though the voltage at the output is greater than the voltage at the input, the power in the output is less than the power in the input, so the gain in dB is negative.
4) Convert the formula $E^{2}=P / 120 \pi$ into decibel form, where P is the power in Watts and E is the electric field strength in V / m.

Take 10 times the $\log _{10}$ of both sides, and we get:

$$
\begin{aligned}
& 10 \log _{10}\left(E^{2}\right)=10 \log _{10}(P)-10 \log _{10}(120 \pi) \\
& 20 \log _{10}\left(E^{2}\right)=P(\mathrm{dBW})-25.76
\end{aligned}
$$

5) Express a power of $70 \mathrm{~dB} \mu \mathrm{~W}$ in $\mathrm{dBW}, \mathrm{dBmW}$, and $\mathrm{dB} \mu \mathrm{V}$ assuming an impedance of 100 ohms.

$$
\begin{aligned}
& 70(\mathrm{~dB} \mu \mathrm{~W})=10 \log _{10}\left(\frac{P(\mathrm{~W})}{10^{-6}(\mathrm{~W})}\right) \\
& P=10^{7} \mu \mathrm{~W}=10 \mathrm{~W}
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
P(\mathrm{dBW})=10 \log _{10}\left(\frac{P(W)}{1(W)}\right)=10 \log _{10}(10)=10 \mathrm{dBW} \\
P(\mathrm{dBmW})=10 \log _{10}\left(\frac{10(W)}{10^{-3}(W)}\right)=10 \log _{10}\left(10^{4}\right)=40 \mathrm{dBmW} \\
P(\mathrm{~dB} \mu \mathrm{~V} \text { in } 100 \mathrm{ohms})=10 \log _{10}\left(\frac{10(W)}{\left(10^{-6}\right)^{2} / 100}\right)=10 \log _{10}\left(10^{15}\right)=150 \mathrm{~dB} \mu \mathrm{~V}
\end{gathered}
$$

1.5 Problems

1) Express the following linear power ratios in $\mathrm{dB}: 0.1 ; 10^{-7} ; 1000 ; 16 ; 0.125$.
2) Express the following quantities in dB in linear power ratios: $-13 \mathrm{~dB} ; 9 \mathrm{~dB} ; 30 \mathrm{~dB}$.
3) A high power amplifier is rated as having a gain of 36 dB . It receives an input power of 10 mW . What is the output power?
4) A radio transmitter transmits a total of 100 W . A radio receiver, listening to the transmitter receives 10 pW . What is the loss of the radio channel, expressed in dB ?
5) An impedance-matching transformer accepts a sine-wave input from a 100-ohm transmission line at 0.2 V peak-to-peak, and outputs a 0.12 Volt peak-to-peak signal into a 50 ohm matched transmission line. Express the loss of this transformer in dB.
(Note that the mean power in a sine wave of peak-to-peak amplitude A Volts on a transmission line of amplitude Z ohms is $A^{2} / 8 Z$ Watts.)
6) The gain of antennas is often expressed in terms of dBi - power gain relative to an isotropic antenna. The gain of the antenna used is 10 dBi , and the radio signal strength received at a receiver is 50 pW . The antenna is then replaced by a new antenna, and the received signal strength increases to 200 pW . What is the gain of the new antenna in dBi ?
7) A sine wave of amplitude 2 Volts is sent into a long length of cable. At the other end, 250 meters away, the sine wave emerges with an amplitude of 0.2 mV . What is the attenuation of the cable, expressed in dB / m (decibels per metre)?

[^0]: ${ }^{1}$ It derives from a unit called a Bel, which was just the logarithm (to the base ten) of the power ratio. However, this was found to be a rather large unit, and the deci-Bel, which is one-tenth of a Bel, was used instead.

[^1]: ${ }^{2}$ There is one common exception to this rule: if you're using the log-normal distribution to represent a distribution of channel gains or signal powers (this is very common with mobile radio channels), and using the Q or erf functions to calculate the probability of a fade. In these cases, the standard deviation is expressed in dB , and to work out the argument of the Q-function requires a division by the standard deviation in dB . However, that's about the only case I can think of where two quantities both in dB are multiplied or divided.

