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1 GSW… Signal Transforms 
The basic idea of all signal transforms is to take a signal of interest, and represent it as a linear 
sum of a number of other signals.  Something like1: 

    i i
i

y t a x t  (0.1) 

That might not sound very useful at first, but if these ‘other signals’ have some particularly 
simple mathematical properties, then it’s often easier to convert a given signal into a sum of 
other signals, perform whatever linear mathematical operation2 is required on the ‘other 
signals’, and then add up all the results.  That can be easier than trying to do the same 
operation on the original signal. 

1.1 A Very Simple Example 

I’ll start with just about the simplest example I can think of.  Consider a set of four rectangular 
pulses, each with a width of one-quarter, a height of two, equally spaced between zero and one, 
as shown below: 
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Figure 1  Four Rectangular Basis Functions 

Call these functions xi(t), where i ranges from 0 to 3, and we could write: 

                                                      
1 I’ll use an ‘approximately equal’ sign here, since it’s sometimes not possible to express a given signal y(t) exactly 
in terms of a linear sum of a chosen set of other signals.  However, you can get close enough to be useful. 

2 It has to be a linear operation.  If you express a signal in terms of a sum of other signals, and then perform a non-
linear operation (such as adding a constant, or taking the square) on each of these other signals, and then add the 
results back together, you don’t get the same answer as if you performed the operation on the original signal. 

Simple example: suppose you express a signal x(t) = 2 in terms of the sum of two signals x1(t) = 1 and x2(t) = 1.  
Square both of these signals, and you get x1

2(t) = 1 and x2
2(t) = 1; add these together, and you get x1

2(t) + x2
2(t) = 2.  

However, x2(t) = 4.  Not the same thing at all.  If the operation were linear (multiplying by a constant, integrating, 
differentiating or delaying by a fixed time), then we’d get the same answer.  Fortunately, a lot of the most 
interesting signal processing algorithms are composed of linear operations, which is just as well.  If they weren’t, 
the whole idea of doing signal transforms would fall apart. 
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The basic idea of signal transforms is to be able to express one function in terms of a linear 
sum of a set of other functions (known as the basis signals or basis functions: here, these are 
the four rectangles).  Consider the function y(t) = t3.  How do you express this as the sum of a 
linear set of these rectangles? 

Well, clearly, you can’t.  Not exactly, anyway.  Any linear combination of this set of rectangles 
is going to look a bit like a staircase: the value is going to be constant for each time step of 
0.25 seconds.  However, we can get very close: what we need to know is how to work out the 
heights of these rectangles that gives the closest possible approximation to the smooth curve 
y(t) = t3.  That means working out the coefficients a0, a1, a2 and a3 in the expression: 
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Figure 2  Matching the Basis Functions to the Curve 

that give this best fit.  As usual in signal processing, we’ll define ‘best fit’ as ‘minimising the 
mean square error’.  In the general case this means minimising: 
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where the range over which we’re trying to match the signal y(t) is from t1 to t2.  To minimise 
this mean-square error, we just differentiate the expression for the mean-square error with 
respect to each value of aj, and look for a turning point.  The coefficients aj are not functions of 
time, so we can just do the differentiation inside the integral: 
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and for a turning point (in this case a minimum), we set this to zero, which gives: 
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Expanding the sum into one component with i = j and another component with all the others, 
gives 
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This is where two very useful properties of the basis functions make life much easier for us.  
The functions I chose (the four rectangles) are orthogonal, and orthonormal.  What does that 
mean?  Well... 

1.1.1 Orthonormal Basis Functions 

The four rectangles don’t overlap at all.  Therefore, if I multiply any two of them together, I’m 
just going to get zero at all times.  More generally, this means that: 
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provided i ≠ j.  Sets of functions that have this property are known as orthogonal functions. 

Now, you might be wondering why I chose these rectangular basis functions to have a height 
of two.  The answer is that I can then write: 
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The product of one of these rectangle with itself is just the same rectangle with a height of 
four, and the area under a rectangle of height four and width one-quarter is one.  Sets of 
orthogonal basis functions that all have this property are known as orthonormal functions, and 
they have the property: 
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It’s possible to use sets of functions that are not orthonormal in signal transforms, but using 
orthonormal functions makes the use of these functions rather simpler. 

1.1.2 Finding the Best Linear Combination 

Using an orthonormal set of basis functions means that equation (0.7) can be simplified to: 
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and therefore: 
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It’s a very simple way to work out the optimum linear combination of the basis vectors to use 
(optimum in the ‘minimise mean square error’ sense, as usual.) 

For the example here, we get: 
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so the best possible linear combination of our four basis functions is: 
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Plot these on a graph (along with the exact function y(t) = t3) and it looks like this: 
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Figure 3  Exact and Approximate Forms of y(t) = t3 

Note that the approximate form, ye(t) is accurate over a restricted range only: in this case from 
zero to one.  Trying to use this approximate expression outside this range can lead to very large 
errors (in this case, the approximate expression has a value of zero for all values of t greater 
than one, which is clearly a very bad approximation to t3). 
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1.1.3 The Expectation of the Error in the Approximation 

With any approximation technique, it’s very useful to have some measure of how good an 
approximation it is, and yet again the usual method is to quantify this in terms of the mean 
square error (after all, that’s the error we were trying to minimise in the first place).  In this 
case, this gives: 
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Multiply out the bracket, and we get: 
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Once again, the choice of orthonormal basis functions lets us simplify this expression 
considerably, since all the integrals in the final (double) summation in which i ≠ k are zero, and 
for i = k they are one.  Furthermore, we’ve got the result that: 
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since that’s how we worked out ai in the first place.  Substituting these results in equation 
(0.19) gives: 
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For the example here, that gives: 
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That’s quite a small mean-square error.  You can produce a reasonable good approximation to 
the y(t) = t3 graph between zero and one by adding together suitable amounts of our four 
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orthonormal basis functions, and you can work out the best possible linear combination of 
them to use very easily. 

1.1.4 Warning: The Expectation of Error in the Answers 

The whole point of doing signal transforms is that some mathematical operations are easier to 
perform on the basis functions than on the original function, and can provide good 
approximations to the right answer. 

For example, suppose you wanted to integrate the function y = t3 between zero and one.  You 
could do this analytically: 
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or by just adding up the areas of the four rectangular basis functions: 
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in this case, the answer is perfectly correct, and avoids having to do any integration at all (after 
you’ve worked out the coefficients ai, that is). 

Of course, just because ye(t) is a good approximation to the original signal y(t) doesn’t mean 
that the results of any linear operation on the transformed signal will be a good approximation 
to the results of the linear operation on the original signal.  For example, what if you wanted to 
differentiate the function y = t2 rather than integrate it?  The differential of y = t3 is y = 3t2, a 
smooth function.  Differentiate the series of rectangles, and the result is zero everywhere 
except at five times (0, 0.25, 0.5, 0.75 and 1), where the gradient is infinite.   
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Figure 4  Errors in Differentiating a Transform 

Nowhere near right: you have to be a little careful about what basis functions you use, and 
what you do with them.  If we could use smoother basis functions, we might get a much better 
behaved signal transform, at least in terms of differentiating it.  For example: 
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1.2 A Slightly Different Example 

Consider the following three functions of t, in the range between t = 0 and t = 1: 
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Figure 5  Three Orthonormal Functions in the Range 0 to 1 

These three functions are orthonormal, in other words they obey the equation: 
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Now, suppose we had some other function of time that could be expressed in the form: 

   2y t A Bt Ct    (0.26) 

where A, B and C are constants.  We could follow a similar procedure as before to find the 
optimum amounts of the three functions to add together to approximate y(t), but in this case 
there’s a short-cut.   The function y(t) is the sum of a constant term, a term proportional to t, 
and a term proportional to t2.  So are the three basis functions. 

That suggests that by equating terms in the co-efficients of t, we should be able to express the 
function y(t) in terms of the three basis functions exactly.  All we need to do is solve the set of 
equations:  
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and these are simple to solve, giving: 
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In this case, with this particular function y(t), and this choice of orthonormal basis functions, 
there is no error in the signal transform.  The ‘best fit’ is perfect. 

Trying to fit these basis functions to a different signal might not lead to quite such an accurate 
result, however we’ll be able to differentiate it, and we’ll get a smooth, sensible signal that 
doesn’t shoot off to infinity.  It’s just a little bit harder to work out the signal transform. 

1.2.1 Complete Sets of Orthogonal Functions 

It is sometimes possible to find a set of orthogonal basis functions that ensures that the ‘best 
fit’ is perfect for a wide range of different input functions y(t), preferably including all of the 
input functions of interest.  A set of orthogonal functions with this property is called a 
complete set. 

One such complete set is an infinite number of infinitely-thin rectangles, equally spaced in 
time.  This is just the limiting case of the situation illustrated above where the time period from 
zero to one second was split into four rectangles, although we’d now have an infinite number 
of rectangles.  You can express any function in terms of an infinite number of infinitely thin 
rectangles in this way: you just have to set the height of the small rectangle equal to the value 
of the function at that time. 

The limiting case of a rectangle with a width of t and height of 1 / t (and therefore an area 
of one) as t  tends to zero is the delta function, such a rectangle at time t =  is written as 
(t – ). 
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Figure 6  The Delta Function 

Any function y(t) can be expressed in terms of these basis functions by multiplying each delta 
function by y(t) 
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1.3 Orthogonal, but not Orthonormal 

There is one very important signal transform3 in which the basis functions are not orthonormal, 
although they are still orthogonal.  In this case we can write: 
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where: 
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and Ei can be thought of as the energy of the signal xi(t) in the time period between t1 and t2. 

Using an orthogonal set of basis functions means that equation (0.7) can be simplified to: 
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and therefore: 
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Working out the minimum mean-square error in this case, we get: 
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1.4 Working with Complex Basis Functions 

Not all signals are real.  If we have a complex signal, then we can still use complex basis 
signals, we just have to change the derivations above slightly.  The problem is that we’re no 
longer just looking for the minimum mean square error, we’re looking for the minimum mean 
square of the absolute value of the error4.  For any complex number z, this is given by: 

                                                      
3 The Fourier transform: perhaps the most important of them all. 

4 When dealing with complex numbers, it’s not obvious how to minimise a square, since the square of a complex 
number is complex.  For example, is 6 + 8j bigger than 9j or not?  The usual way to avoid any confusion is to try 
and minimise the absolute value of the square of the error, corresponding to minimising the distance on the complex 
[continued on next page…] 
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2 *z z z  (0.35) 

so here, we’re trying to minimise: 
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Multiply this out, and we get: 
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For this to work out easily, we’ll have to slightly modify our definition of orthogonal, to: 
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and if we can find a set of basis functions with this property, then we can simplify the last term 
to: 

    
2

1

* * *
t

i j i j i i i
i j it

a a x t x t dt a a E   (0.39) 

where Ei is the energy in the signal xi(t) between t1 and t2, defined by: 

    
2

1

*
t

i i i
t

E x t x t dt   (0.40) 

and note that by this definition, Ei is always real since the product of a complex number and its 
conjugate is real. 

Since the first term is not a function of the coefficients ai, we don’t need to consider 
differentiating this term when finding the optimum coefficients.  What we do need to do is 
consider the real and imaginary parts of the coefficients separately.  If we write: 

 k k ka u jv   (0.41) 

                                                                                                                                                          
plane between the two points.  The distance between two points is a well-defined real scalar quantity, and it’s 
obvious when that’s getting smaller. 
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where uk and vk are both real scalar numbers, and the real and imaginary parts of the 
coefficients respectively, then for a minimum mean square absolute error, we need to 
differentiate the error with respect to both uk and jvk.  

First, differentiating equation (0.37) with respect to uk gives: 

 
  

         
2 2

1 1

2
* *

2 1

E 1
2

t t

k k k k
k t t

e t
y t x t dt y t x t dt u E

u t t

 
    
  
 
   (0.42) 

and then with respect to jvk gives: 

 
  

         
2 2

1 1

2
* *

2 1

E 1
2

t t

k k k k
k t t

e t
y t x t dt y t x t dt jv E

jv t t

 
   
  
 
   (0.43) 

and setting these both to zero gives the two equations: 

        
2 2

1 1

* *1

2

t t

k k k
k t t

u y t x t dt y t x t dt
E

 
  
 
 
   (0.44) 

        
2 2

1 1

* *1

2

t t

k k k
k t t

jv y t x t dt y t x t dt
E

 
  
 
 
   (0.45) 

and adding these together gives the result we want: 

    
2

1

*1
t

k k k k
k t

a u jv y t x t dt
E

     (0.46) 

Similarly, the mean value of the error is now given by: 

 

    

       

   

     

2 2

1 1

2

1

2

1

* * * *

1
2

2 1
* *

* * * * *

2 1 1

1
E

1

t t

i i i
it t

t

i i i i i i
i it

t

i i i i i i i i i
i i it

y t y t dt a y t a x t dt

e t
t t

a y t a x t dt a a E

y t y t dt a a E a a E a a E
t t





 
 
 
 
 
   
 

 
    
 
 

 

 

  

 (0.47) 

However, Ei is a real quantity by definition, so Ei = Ei
*, and that gives the simple expression for 

the ‘mean square’ error: 
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        

   

2

1

2

1

2 * *

2 1 1

2 2

2 1 1

1
E

1

t

i i i
it

t

i i
it

e t y t y t dt a a E
t t

y t dt a E
t t





 
  
 
 

 
  
 
 





 (0.48) 

1.5 Problems 

1) Try expressing y(t) = t3 in terms of the second series of orthonormal functions (those used in 
section 1.2).  What is the mean-square error in this case? 

2) Consider the three functions x1(t) = 1, x2(t) = exp(jt) and x3(t) = exp(2jt).  Show that they are 
orthogonal in the range from zero to 2, and find the best way to express the function y = x2 in 
terms of a linear sum of these functions. 

What is the expectation value of the mean square absolute error in this case? 


