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1 GSW… Gaussian Elimination
Gaussian elimination is probably the simplest technique for solving a set of simultaneous linear
equations, such as:

1 1,1 1 1,2 2 1,3 3 1,

2 2,1 1 2,2 2 2,3 3 2,

,1 1 ,2 2 ,3 3 ,

...

...

...

...

n n

n n

m m m m m n n

y A x A x A x A x

y A x A x A x A x

y A x A x A x A x

    

    

    

(0.1)

more usually written using vectors to represent the terms ym and xn and a matrix to represent all
the coefficients aij, as follows:
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or just as:

y A x (0.3)

Gaussian elimination is in many ways the ‘brute force’ approach to solving systems of
simultaneous linear equations. It is time-consuming, especially for large matrices, but the rules
are simple to understand and easy to program, and it is reliable.

1.1 Elementary Row Operations

The technique of Gaussian elimination relies on the fact that there are certain operations that
can be done on the set of equations that do not change the value of the unknown vector x.
Consider the set of simultaneous equations:
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which can be represented in matrix form as:
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The operations that don’t change x are known as elementary row operations. These
elementary row operations have to be applied to both the matrix A and the known vector y (in
this case the vector [5; 4]) and consist of:

 Swapping any two rows
 Multiplying one row by a constant term
 Adding a linear multiple of one row to another row
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1.1.1 Swapping Rows

Clearly, I can swap the order of the equations, and the component values x1 and x2 of x remain
the same:
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That’s obvious I hope. In terms of the matrix form of the equations, this is equivalent to
swapping the elements of the corresponding rows of the matrix A, and the corresponding
elements of the vector y, but not the elements of the vector x. In this case, we’d get:
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1.1.2 Multiplying Rows by a Constant

I can also multiply any of the equations by any constant value, for example multiply the second
equation by minus two, to get:
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or in matrix form:
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and again, the values of the elements of x have not changed: multiplying an entire equation by
minus two does not change the relationship between x and y in the equation. Note that again, I
have to make the change to the row of A and the corresponding element of y, but the vector x
remains unchanged.

1.1.3 Adding Rows Together

If A = B and C = D then clearly A + C = B + D. In the same way, I can add any two of the
equations together, and replace one of the original equations with the sum. Suppose I added
the first and second equations together, and replaced the second equation with the sum:
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Again, in terms of the matrix representation, I’ve changed the elements of A and y into:
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1.1.4 Hang On a Minute…

You might have just spotted that we now know the value of x2. All we have to do is divide the
new second equation by three, and we’ll get x2 = –2. Then, a simple substitution process into
the remaining first equation produces x1 = 1. We’ve solved for x without having to find the
inverse matrix.

This process is called back-substitution (since it starts by finding the last element of x and then
works backwards to the first), and it can be done whenever the matrix has an upper-triangular
form (i.e. no non-zero elements below the leading diagonal). Another example: a four-by-four
matrix in upper triangular form would in general look something like this:

1,1 1,2 1,3 1,4

2,2 2,3 2,4

3,3 3,4

4,4

0

0 0

0 0 0

U U U U

U U U

U U

U

 
 
 
 
 
 
 
 

which corresponds to the equations:

1 1,1 1 1,2 2 1,3 3 1,4 4

2 2,2 2 2,3 3 2,4 4

3 3,3 3 3,4 4

4 4,4 4
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With a set of equations in this form, it’s easy to get the value of x4 from the last equation, and
once knowing that you can determine x3 from the second-last equation, and then x2, and so on.

This is pretty much what Gaussian elimination is all about: using these three elementary row
operations to get the matrix A into this useful upper-triangular form, and then finding the value
of x without having to calculate a matrix inverse at any stage. Of course, Gaussian elimination
can be used for other things as well: it can find matrix inverses, determine the rank of a matrix,
and perform matrix decomposition. There are a couple of tricks to know about along the way,
but the basic ideas are pretty simple.

1.1.5 The Extended Matrix Form

You might have noticed that the elementary row operations could not just be done on the
matrix A, they had to be done on the vector y as well. In practice, we often define an extended
or augmented matrix form, which combines the matrix A and the vector y into one larger
matrix, with one more column than A. For example, for a 3-by-3 matrix A, this would produce
the extended matrix:
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3,1 3,2 3,3
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A A A y
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Now the elementary matrix operations can be performed on the rows of this extended matrix,
without having to worry about remembering to do them to both A (in unextended form) and y.
This is easier to program.
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1.1.6 Elementary Column Operations

One final point before I finish on elementary operations and get on with the algorithm: there
are elementary column operations as well. You can swap any of the columns of the matrix A,
but this time you have to swap over the corresponding elements in the rows of the vector x, and
leave y alone. For example, we could write our original two equations (0.4) as:
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which in matrix form would be:
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We’ve just swapped over the two columns in the matrix, and the rows of the elements in x.
This is a special case of a more general result: take any two matrices A and B, and if you swap
the nth and mth column of A and the nth and mth row of B, the product AB does not change1.

1.2 The Basic Gaussian Elimination Algorithm

The idea of Gaussian elimination is to perform elementary row operations (mostly adding
multiples of each equation to all of the equations below), in order to eliminate the entries in the
matrix A below the leading diagonal. For example, take the set of three linear simultaneous
equations:

1 1,1 1,2 1,3 1

2 2,1 2,2 2,3 2

3 3,1 3,2 3,3 3

y A A A x

y A A A x

y A A A x
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In terms of how the algorithm is often programmed, the next step is to express the matrix A
and vector y in terms the extended matrix form by adding the column vector y to the right of
the matrix A:
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(the vertical line after the third column in the extended matrix indicates where the original
matrix A and column vector y join up; it has no other significance, and usually isn’t included
when we write the extended matrix).

Working in terms of this extended matrix, the first step is to remove any terms in x1 from the
second equation (y2 = A2,1x1 + A2,2x2 + A 2,3x3). This can be done by subtracting A2,1/ A1,1 times
the first equation from the second equation, to leave the set of equations (written in this new
extended matrix form):

1 See the problems and solutions for a proof of this.
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1,1 1,2 1,3 1

2,2 1,2 2,1 1,1 2,3 1,3 2,1 1,1 2 1 2,1 1,1

3,1 3,2 3,3 3

0 / / /
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A A A A A A A A y y A A
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Although this is easier to write if I let b = A2,1/A1,1.

1,1 1,2 1,3 1

2,2 1,2 2,3 1,3 2 1

3,1 3,2 3,3 3

0

A A A y

A bA A bA y by

A A A y
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Then, we remove any terms in x1 from the third equation, by subtracting c = A3,1/A1,1 times the
first equation from the third equation:

1,1 1,2 1,3 1

2,2 1,2 2,3 1,3 2 1

3,2 1,2 3,3 1,3 3 1

0

0

A A A y

A bA A bA y by

A cA A cA y cy
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Next, we subtract d = (A3,2 – cA1,2) / (A2,2 – bA1,2) = (A3,2 – A1,2(A3,1/A1,1)) / (A2,2 – A1,2(A2,1/A1,1))
times the second equation from the third equation:

   

1,1 1,2 1,3 1

2,2 1,2 2,3 1,3 2 1

3,3 1,3 2,3 1,3 3 1 2 1

0

0 0

A A A y

A bA A bA y by

A cA d A bA y cy d y by
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and the first three columns, which correspond to the manipulated matrix A, are now in upper
triangular form. Writing this system of equations back into the familiar non-extended form
here for clarity, gives:

   

1 1,1 1,2 1,3 1

2 1 2,2 1,2 2,3 1,3 2

3 1 2 1 33,3 1,3 2,3 1,3

0

0 0

y A A A x

y by A bA A bA x

y cy d y by xA cA d A bA
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These three simultaneous equations can be written:
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1

1

1

x y A x A x
A

x y by A bA x
A bA

x y cy d y by
A cA d A bA
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and these can be easily solved by back-substitution (that is, first finding the value of x3 from
the third equation, then substituting this value into the second equation to find the value of x2,
then substituting both x2 and x3 into the first equation to find x1. We’ve now found the vector
x, but avoided the need to explicitly invert the matrix. That’s good: that saves time.
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1.2.1 An Example of Gaussian Elimination

As an example of this process in action, consider the simultaneous equations:

1 2 3

1 2 3

1 2 3

9 2

1 2 2

4 3

x x x

x x x

x x x
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in matrix form, these can be written:

1

2

3

9 1 2 1

1 2 1 2

4 1 1 3

x

x

x
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and this gives the extended matrix form:

1 2 1 9

2 1 2 1

1 1 3 4

 
   
   

(0.26)

Subtract twice the first equation (row) from the second equation (row):

1 2 1 9

0 5 4 19

1 1 3 4

 
   
   

(0.27)

then add the first equation (row) to the third equation (row):

1 2 1 9

0 5 4 19

0 3 4 13

 
   
  

(0.28)

then add 3/5 of the second equation (row) to the last equation (row):

1 2 1 9

0 5 4 19

0 0 8/ 5 8/ 5

 
   
  

(0.29)

If we like, we can normalise the matrix by dividing each row by the leading element (the first
non-zero element) in the row:

1 2 1 9

0 1 4 / 5 19 / 5

0 0 1 1

 
  
  

(0.30)

and writing this back in the more familiar form using a non-extended matrix, we get:
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1

2

3

9 1 2 1

19 / 5 0 1 4 / 5

1 0 0 1

x

x

x

     
          
         

(0.31)

from which can see that the original equations have been converted into the form:

1 2 3

2 3

3

9 2

19 4

5 5

1

x x x

x x

x

  

 

 

(0.32)

which are easy to solve sequentially, starting from the bottom and working up (back-
substitution):

3

2 3

1 2 3

1

19 4 19 4 15
3

5 5 5 5 5

9 2 9 6 1 2

x

x x

x x x
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The technique can easily be extended to any number of simultaneous equations, and typically2

requires less than one-half of the number of operations required to invert the matrix.

1.3 Pivoting: Improving the Gaussian Elimination Algorithm

Having said that the Gaussian elimination technique is reliable, I should point out that there are
some circumstances in which the simple algorithm described above just doesn’t work.
Fortunately, there is a simple modification to the algorithm that fixes the problem in most
cases. In the general system of three equations described above, the problem is the term d.

In the third step of the algorithm, we had to subtract an amount d = (A3,2 – cA1,2) / (A2,2 – bA1,2)
= (A3,2 – A1,2(A3,1/A1,1)) / (A2,2 – A1,2(A2,1/A1,1)) times the second equation from the third
equation. If A2,2 – A1,2(A2,1/A1,1) = 0, then this is impossible. It requires a division by zero.

For example, consider the set of equations:

1 2 3

1 2 3

1 2 3

1 3

7 2 6

6 2

x x x

x x x

x x x

   

  

  

(0.34)

Perform the first two steps of the Gaussian elimination technique to remove the coefficients of
x1 in the second and third equations, and we get:

2 I have to say ‘typically’ since the exact cost of doing these calculations is dependent on the hardware being used to
do the calculations. There’s a lot of clever hardware around now that can speed up this sort of calculation, but only
if the calculations are done in the way the hardware is expecting.
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1 2 3

3

2 3

1 3

9 0 0 3

7 0 2 3

x x x

x

x x

   

  

  

(0.35)

and it’s now impossible to subtract a multiple of the second equation from the third equation to
eliminate the term –2x2 from the third equation. The solution is obvious to us (although
perhaps not to a computer, unless we program it to look out for these cases): all we need to do
is swap the second and third equations:

1 2 3

2 3

3

1 3

7 0 2 3

9 0 0 3

x x x

x x

x

   

  

  

(0.36)

and without any further processing, the matrix is in upper triangular form, and we can carry on
with the algorithm.

Even if A2,2 – A1,2(A2,1/A1,1) was not quite zero but just very small, the simple version of the
algorithm would require multiplying the second equation by a very large number before
subtracting from the third equation. Any small amount of rounding error in the arithmetic
caused by working with finite precision3, or errors in the values of the terms in the matrix A or
the vector y caused by noise, and this process could magnify this error, and result in a large
error in the result for x. (Such sets of equations are known as ‘ill-conditioned systems’.)

Again, the solution is to introduce another step into the Gaussian elimination algorithm: before
eliminating the terms in xn from the lowest (N – n) equations, sort the lowest (N – n + 1)
equations so that the coefficient of xn with the largest absolute value is on the nth row (where N
is the total number of equations).

This is exactly what we have just done in the case where N = 3 and n = 2: after the first
elimination stage, the largest coefficient of x2 in the lowest 2 equations was the –2 in the third
equation: so we swapped this third equation with the second equation and proceed. This
process is sometimes called pivoting4.

1.4 Inverting Matrices Using Gaussian Elimination

The Gaussian elimination algorithm above successfully solves most systems of linear
equations without inverting the matrix. If we really wanted to invert the matrix, we can do this
by extending the algorithm.

Instead of starting with the equations in the form:

3 For example with a limited number of bits of resolution in a fixed-point DSP chip, or an FPGA implementation.

4 Technically, this process of exchanging rows so that the row with the largest element in the column ends up on the
main diagonal is called partial pivoting. Full pivoting would allow the order of the columns to be changed as well,
and can provide greater accuracy in the result when the accuracy of the calculations is limited. This however
requires the order of the components of the unknown vector x to be changed too, and requires significantly more
processing power.



Getting Started with Communications Engineering GSW… Gaussian Elimination

© 2012 Dave Pearce Page 9 04/07/2012

1 1,1 1,2 1,3 1

2 2,1 2,2 2,3 2

3 3,1 3,2 3,3 3

y A A A x

y A A A x

y A A A x

    
         
        

(0.37)

we can multiply the left-hand side by the unit matrix before we start:

1 1,1 1,2 1,3 1

2 2,1 2,2 2,3 2

3 3,1 3,2 3,3 3

1 0 0

0 1 0

0 0 1

y A A A x

y A A A x

y A A A x

     
            
           

(0.38)

and then instead of modifying the terms in the vector y as we combine the equations, we
change the terms in the unit matrix in the same way as the terms in the matrix A. For example,
the first step in the Gaussian elimination becomes:

1 1,1 1,2 1,3 1

2 2,2 1,2 2,3 1,3 2

3 3,1 3,2 3,3 3

1 0 0

1 0 0

0 0 1

y A A A x

b y A bA A bA x

y A A A x

     
             
           

(0.39)

which represents exactly the same set of equations as:

1 1,1 1,2 1,3 1

2 1 2,2 1,2 2,3 1,3 2

3 3,1 3,2 3,3 3

0

y A A A x

y by A bA A bA x

y A A A x

    
           
        

(0.40)

in the format we were using before. We can write this using the extended matrix format as
well, but this time we start with an extended matrix of:

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1 0 0

0 1 0

0 0 1

A A A

A A A

A A A

 
 
 
 
 

(0.41)

which produces, after the first step, an extended matrix of:

1,1 1,2 1,3

2,2 1,2 2,3 1,3

3,1 3,2 3,3

1 0 0

0 1 0

0 0 1

A A A

A bA A bA b

A A A

 
 

   
 
 

(0.42)

and after the third step:

 

1,1 1,2 1,3

2,2 1,2 2,3 1,3

3,3 1,3 2,3 1,3

1 0 0

0 1 0

10 0

A A A

A bA A bA b

c bd dA cA d A bA

 
 

   
 

      

(0.43)

Before, all we wanted to do was solve the simultaneous equations, so we stopped here.
However, to find the inverse, we need to continue, and start working back up from the bottom,
removing all the terms in the first three columns of this extended matrix (the part
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corresponding to the original matrix A) above the leading diagonal. The first step is to remove
the term in A1,3 from the first row by subtracting e = A1,3 / (A33 – cA1,3 – d(A2,3 – bA1,3)) times
the third equation:

 

1,1 1,2

2,2 1,2 2,3 1,3

3,3 1,3 2,3 1,3

0 1 ( )

0 1 0

10 0

A A e bd c de e

A bA A bA b

c bd dA cA d A bA

   
 

   
 

      

(0.44)

and so on, until the first three columns on this extended matrix (which are the manipulated
version of the original matrix A) are in diagonal form (i.e. they only have non-zero elements on
the leading diagonal). Then divide each row by the value of its diagonal term, and we’re left
with an extended matrix of the form:

11 12 13

21 22 23

31 32 33

1 0 0

0 1 0

0 0 1

w w w

w w w

w w w

 
 
 
 
 

(0.45)

which represents a set of simultaneous linear equations in the form:

11 12 13 1 1

21 22 23 2 2

31 32 23 3 3

1 0 0

0 1 0

0 0 1

w w w y x

w w w y x

w w w y x

      
            
            

(0.46)

and clearly, since Wy = x and y = Ax, the matrix W = A-1. This process is known as the
Gauss-Jordan method.

I’ll illustrate this with the same example as before. After the Gaussian elimination algorithm
for the set of equations:

1 2 3

1 2 3

1 2 3

9 2

1 2 2

4 3

x x x

x x x

x x x

  

   

   

(0.47)

we got the series of equations (written in non-extended format this time):

1

2

3

1 0 0 9 1 2 1

2 / 5 1/ 5 0 1 0 1 4 / 5

1/8 3/8 5/8 4 0 0 1

x

x

x

       
                
              

(0.48)

Now we continue by adding one times the third equation to the first equation to eliminate the
term at the top-right of the matrix A:

1

2

3

9 /8 3/8 5/8 9 1 2 0

2 / 5 1/ 5 0 1 0 1 4 / 5

1/8 3/8 5/8 4 0 0 1

x

x

x

        
                
              

(0.49)

then adding 4/5 of the third equation to the second equation:
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1

2

3

9 /8 3/8 5/8 9 1 2 0

1/ 2 1/ 2 1/ 2 1 0 1 0

1/8 3/8 5/8 4 0 0 1

x

x

x

        
                
              

(0.50)

and finally subtracting twice the second equation from the first equation:

1

2

3

1/8 5/8 3/8 9 1 0 0

1/ 2 1/ 2 1/ 2 1 0 1 0

1/8 3/8 5/8 4 0 0 1

x

x

x

      
                
              

(0.51)

(This corresponds to an extended matrix of:

1 0 0 1/8 5/8 3/8

0 1 0 1/ 2 1/ 2 1/ 2

0 0 1 1/8 3/8 5/8

 
   
   

(0.52)

if we were using the extended notation.) So, we have our inverse:

1
1 2 1 1 5 3

1
2 1 2 4 4 4

8
1 1 3 1 3 5


   

         
         

(0.53)

If we have to pivot, we just pivot the extended matrix: swapping over the rows of the extended
matrix. If we end up having to divide by zero anyway, then this indicates that the matrix does
not have an inverse.

1.5 Solving a Series of Systems of Simulations Equations

Quite often, we have the problem of solving a whole series of systems of simultaneous
equations y =Ax, with the same value of A, but different values of y. This happens, for
example, when we have a signal transmitted over a linear distorting channel, and we know the
channel response (A) and the received signal (y), and we want to find out what the transmitted
signal was (x). If the channel does not change, the same value of A is used over and over again
with each new value of y.

We don’t really want to have to do a full Gaussian elimination each time, for the new value of
y. We could do a full inversion of the matrix and calculate A-1, but there is another way: a
slight twist on the Gaussian elimination technique that makes solving the second, third and all
subsequent sets of equations much easier. It starts off just like an attempt to invert the matrix,
but it doesn’t go the whole way.

The idea is to write the equations as:

Iy Ax (0.54)

where I is the unit matrix, and then instead of making changes in the value of y as we follow
the process of Gaussian elimination, we make the changes to I instead. This is exactly the
same idea as described above for calculating the inverse matrix.
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For example, consider the same set of equations as we had before (the ones that required
pivoting), only this time we want to keep the value of y as a variable, since it’s going to take a
different value for each set of simultaneous equations:

1 1 2 3

2 1 2 3

3 1 2 3

3

2 6

2

y x x x

y x x x

y x x x

  

  

  

(0.55)

written in this new matrix format, this becomes:

1 1

2 2

3 3

1 0 0 1 3 1

0 1 0 2 6 1

0 0 1 1 1 2

y x

y x

y x

      
            
            

(0.56)

The first step is to subtract twice the first equation from the second equation:

1 1

2 2

3 3

1 0 0 1 3 1

2 1 0 0 0 1

0 0 1 1 1 2

y x

y x

y x

      
              
            

(0.57)

Next, we have to subtract the first equation from the second equation:

1 1

2 2

3 3

1 0 0 1 3 1

2 1 0 0 0 1

1 0 1 0 2 3

y x

y x

y x

      
              
             

(0.58)

And now we see the need for the pivot. Again, we can do this by swapping the rows in the two
matrices, rather than the rows in the right-hand matrix and the vector y, (this is just equivalent
to writing the three simultaneous equations in a different order):

1 1

2 2

3 3

1 0 0 1 3 1

1 0 1 0 2 3

2 1 0 0 0 1

y x

y x

y x

      
              
             

(0.59)

Now the difference from the matrix inversion process: we stop here. We’ve transformed the
original set of equations into the form:

By Ux (0.60)

where U is an upper-triangular matrix. For any new value of y, we can simply work out By
since both are known, then determine x using the usual process of back-substitution. In the
case where A is a sparse matrix (i.e. most terms are zero), this can be much faster than working
out a full matrix inverse.

(There are more efficient ways to deal with series of sets of simultaneous equations,
particularly when the matrix A has certain useful properties: see the chapter on Sets of Systems
for more details on these techniques.)
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1.6 Calculating Matrix Rank

Gaussian elimination can also be used to calculate the rank of a matrix. After converting the
matrix into upper-triangular form, count how many non-zero elements there are on the leading
diagonal. The result is the rank of the matrix.

Intuitively, this is reasonable: the rank of a matrix is the number of linearly independent rows
in the matrix. The Gaussian elimination technique aims to simplify the matrix as much as
possible by subtracting multiples of the rows of a matrix from each other. If any rows are
linear combinations of the other rows, Gaussian elimination will remove them entirely.

For example, consider the matrix:

1 2 3 1

2 4 1 0

1 2 3 1

1 3 3 1

 
 
  
 
 
 
   

(0.61)

the first step in the Gaussian elimination is to add twice the first row to the second row:

1 2 3 1

0 0 7 2

1 2 3 1

1 3 3 1

 
 
 
 
 
 
   

(0.62)

then subtract the first row from the third row, and add the first row to the fourth row:

1 2 3 1

0 0 7 2

0 0 0 0

0 5 0 0

 
 
 
 
 
 
  

(0.63)

now we’ll need to do a pivot, since the element A2,2 is zero:

1 2 3 1

0 5 0 0

0 0 0 0

0 0 7 2

 
 
 
 
 
 
  

(0.64)

luckily, all the terms in the second column under A2,2 are already zero, so we can move on to
the third column. Once again, we need to do a pivot, since the term A3,3 is zero but there are
non-zero terms beneath it (the 7, in this case):
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1 2 3 1

0 5 0 0

0 0 7 2

0 0 0 0

 
 
 
 
 
 
  

(0.65)

and now we stop: the matrix is in upper-triangular form. We can count the number of non-zero
elements along the leading diagonal: in this case, three. Hence this matrix has rank three5.

This process works with any matrices, not only square ones. Rectangular matrices have ranks
too, and the rank can be determined from looking at the number of non-zero elements along the
diagonal from the top-left down after a Gaussian elimination process. The only difference is
that in the case of non-rectangular matrices, this doesn’t lead to the element on the bottom-
right.

This is why the rank of a matrix can never be greater than the lower of the number of rows and
number of columns. There aren’t any more elements on the leading diagonal.

1 2 3 4

5 3 1 2

 
 
   

1 2 3

5 3 1

2 1 2

0 3 1

2 2 4

 
 
  
 
 
 
 
 
  

1 2 3 4

5 3 1 2

 
 
   

1 2 3

5 3 1

2 1 2

0 3 1

2 2 4

 
 
  
 
 
 
 
 
  

Figure 1-1 The Leading Diagonal in Non-Square Matrices

1.6.1 Systems with Redundant Information

This method of calculating the rank also solves the problem of knowing which equations to
ignore when there is redundant information. Just go through a process of Gaussian
elimination, and then ignore all the equations with a zero element on the main diagonal.

For example, the case we had in the chapter on Linear Algebra was:

1 2

1 2

1 2

1 2

3 2

1 2

x x

x x

x x

  

 

  

(0.66)

Writing this in matrix format gives:

5 Since this is a four-by-four matrix with rank three, it cannot be inverted. If you tried to calculate the inverse of this
matrix, the next step would be to subtract a multiple of the fourth row to get rid of the term -1 in the top right: and
that’s impossible. Square matrices which do not have full rank (i.e. the rank is less than the number of rows and
columns) do not have inverses.
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1

2

1 1 2

3 2 1

1 1 2

x

x

   
     
      
      
       

(0.67)

which gives the extended form of the matrix as:

1 2 1

2 1 3

1 2 1

 
 
 
 
   

(0.68)

Go through the first steps of the Gaussian elimination algorithm on this matrix, and we get:

1 2 1

0 5 5

0 0 0

 
 
 
 
 
 

(0.69)

The bottom row is all zeros. That means that there is no information in this third equation at
all any more, it’s just:

1 20 0 0x x  (0.70)

Throw this row away. That leaves the square system, which is now already in upper-triangular
form:

1 2 1

0 5 5

 
 
  

(0.71)

and this can be readily solved using the back-substitution technique, which here gives:

1 2

2

1 2

5 5

x x

x

  

 
(0.72)

so:

2

1 2

1

1 2 1 2 1

x

x x

 

      
(0.73)

1.7 Tutorial Questions

1) Prove that any elementary row operation on the extended matrix [A | y] does not change the
values of x in the equation y = Ax.

2) Prove that any elementary row operation on the extended matrix [A | I] does not change the
values of x in the equation Iy = Ax.
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3) Prove that for any two matrices A and B, swapping any two columns of A and the same two
rows of B does not change the product AB (provided the product exists).

4) Solve the simultaneous equations using the Gaussian elimination technique:

1 2 3

1 2 3

1 2 3

2 3 2 0

2 2 0

7 2 0

x x x

x x x

x x x

   

   

   

5) Can you solve the following set of simultaneous equations? If not, why not?

1 2 3

1 2 3

1 2 3

1 2 3

3 2

0 6 5

x x x

x x x

x x x

  

  

  

6) Invert the matrix:

1 7 3

2 2 0

0 3 3

  
  
  

7) Invert the matrix:

1 1 1

2 2 0

0 2 2

 
  
  

and show that your answer is correct.

8) Solve the following set of simultaneous equations:

1 2 3

1 2

1 2 3

2 3

1

2

3 3

2 2 6

x x x

x x

x x x

x x

  

  

  

 

(Yes, there are four equations, but only three elements in x. Try a Gaussian elimination and
see what happens.)

9) Find the rank of the following matrices:

1 3 1 3 2 1

2 2 3 1 4 2

4 1 1 7 8 0

   
        
      

10) What’s the rank of a vector?

11) Convert the following series of simulations equations into the form By = Ux, where U is an
upper-triangular matrix:
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1

2

3

2 3 1 2

4 1 3 2

5 2 1 3

x

x

x
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