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1 GSW… Fourier Analysis 
Fourier analysis is basically all about representing signals in terms of the sums of lots of 
single-frequency components: sine, cosine or complex oscillation waveforms.  In this chapter, 
I’ll start with the basic forms of the trigonometric Fourier series, and outline the derivation of 
possibly the most useful equation in signal processing: the Fourier transform.  After that, a few 
comments about the potential uses  

1.1 Periodic Waveforms: The Cosine Series 

First, assume that a periodic waveform x(t) can be expressed in terms of the sum of a large 
number of cosine waves all of which are periodic with the same period.  That is, we can 
express x(t) as: 
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To work out the co-efficients an, we note that for n and m both positive integers: 
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(since the integration over any integer number of cycles of a cosine wave gives zero, but when 
n = m, the second integration is just the integral of the constant cos(0) = 1). 

This orthogonality property of the fundamental and harmonic cosine frequencies provides a 
simple method of calculating the coefficients an, since if we multiply the waveform x(t) by any 
one of these cosines, and integrate over one period, we get: 
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as the only term in the summation that is not zero is the term where n = m.  Therefore, 
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1.2 Periodic Waveforms: The Sine Series 

However, not all period waveforms can be expressed in terms of a sum of cosine waves.  
Those that can all share the property of having even symmetry: ( ) ( )x t x t  .  (The sum of any 
number of waveforms with even symmetry also has even symmetry.) 

Another set of periodic waveforms have the property of odd symmetry: ( ) ( )x t x t   .  These 
waveforms can be represented in terms of an infinite number of sine functions, using a similar 
technique to that shown above: 
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and since for sine waveforms: 
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we can derive: 
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and therefore: 
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For any waveform that can be described in terms of the sum of a sine functions (in other words 
any odd symmetric waveform), this provides a simple technique for working out how much of 
which frequency sine waves are required. 

1.3 Even and Odd Symmetry 

Cosine waves have even symmetry ( ) ( )x t x t  , and therefore any waveform that can be 
expressed in terms of cosine waves must also have even symmetry.  Sine waves have odd 
symmetry, so any waveform that can be expressed in terms of sine waves must also have odd 
symmetry.  What about waveforms that have neither form of symmetry? 

We have seen before that any arbitrary waveform x(t), can be expressed in terms of the sum of 
an even-symmetric and an odd-symmetric waveform, e(t) and o(t), where: 
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Therefore, any arbitrary function can be expressed in terms of the sum of a function with even 
symmetry (which can possibly be represented in terms of a sum of cosine waveforms), and a 
function with odd symmetry (which can possibly be represented in terms of a sum of sine 
waveforms). 

1.4 The Trigonometric Fourier Series 

While all periodic waveforms can be expressed in terms of the sum of a function with odd 
symmetry and a waveform with even symmetry, I will not attempt to prove here that for all 
waveforms of interest, the resultant even and odd symmetric waves can be expressed as the 
sum of an infinite series of cosine and sine waveforms.  In fact, in general this is not true, as 
any waveform with any discontinuities (i.e. sudden changes) in value or gradient cannot be 
exactly represented in this form.  However, for a wide range of waveforms of practical interest, 
the Fourier analysis technique works well. 

There is one final term that must be considered before any waveform can be represented in 
terms of the Fourier series.  Both cosine and sine waveforms have an average value of zero.  If 
the waveform being represented in terms of cosines and sines does not have an average value 
of zero, then its mean value (a0) must also be added to the series, where: 
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This gives the general form of the trigonometric Fourier Series as: 
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where the coefficients a0, an and bn can be evaluated using the expressions above. 

1.5 The Complex Fourier Series 

Having to work out three different integrals to determine the coefficients a0, an and bn can be 
tiresome.  An alternative complex form of the Fourier series exists that removes this 
requirement, and allows all of the relevant coefficients to be evaluated using just one 
integration.  This form has the general equation: 
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Notice that the coefficients cn now extend from minus infinity to plus infinity, rather than 
starting from one.  The negative terms indicate terms with negative frequencies: not a concept 
that exists in the real world at all, and which might need a bit of explanation. 

1.5.1 Positive and Negative Frequencies 

On the Argand diagram, the complex number Rexp(j) is shown as follows: 
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If the angle  is made a function of time, then a complex oscillation results: the complex 
number moves in circles around the origin.  The rate of change of phase is known as the 
angular frequency  (measured in radians per second), and since there are a total of 2 radians 
in a circle, the period of the oscillation 2 /T   . 

Any complex number circling around the origin in an anti-clockwise direction (so that the 
phase is always increasing) is said to have a positive frequency.  Similarly, any complex 
number circling around the origin in a clockwise direction (so that the phase is always 
decreasing) is said to have a negative frequency. 

A real oscillation of a real quantity in the real world can be represented as the sum of two 
complex oscillations: one of positive frequency, and one of negative frequency, in such as way 
that the two imaginary components of the frequencies cancel out.  For example, a cosine wave 
is represented as: 
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and a sine wave as: 
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and any single-frequency wave of amplitude R and initial phase  as: 
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Note that in all cases the coefficient of the negative frequency term is the complex conjugate of 
the coefficient of the positive frequency term.  This is true for all real waveforms. 

1.5.2 Orthogonality of Complex Oscillations 

To determine the coefficients cn of the complex Fourier series, we first note that: 
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and hence: 
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This equation is the most usually quoted form of the complex Fourier series.  It shows how any 
periodic waveform1 with a period T can be represented in terms of an infinite number of 
complex oscillations with frequencies given by 2m/T. 

The term with coefficient c0 and frequency zero is then just the DC term: hence c0 = a0. 

1.5.3 Power in the Complex Fourier Series 

The mean power in a periodic waveform is just the energy in one period divided by the period.  
Since the total power in the Fourier representation of the waveform must be equal to the total 
energy in the signal, then we have: 
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Using the orthogonality property of the complex exponentials, the only terms that remain in the 
right-hand side after multiplying out the summation are: 
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We can therefore define a “power density” – the amount of power associated with a range of 
frequencies.  Consider a range of frequencies equal to the frequency difference between two 
harmonics, 1/T. 

                                                      
1 Well, not quite any periodic waveform, it still has to have no discontinuities in value or gradient. 
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The amount of power in this frequency range is the power in the component with that 
frequency: which is just |cn|

2.  So we can say that the power density around a frequency n/T Hz 
is: 

2
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1.6 The Fourier Transform 

The Fourier transform provides a technique for applying the ideas of Fourier analysis to non-
periodic waveforms.  The idea is to let the period tend to infinity, and then to argue that there is 
no difference between a non-periodic waveform and a periodic waveform with an infinite 
period. 

In this case, the harmonics become closer and closer together, so that in the limit, there is some 
energy at all possible frequencies, and the spectrum ceases to be a set of continuous lines at 
well-defined harmonic frequencies, and starts to be a continuous function, X().  We define 
this function so that the amplitude of X() at a particular frequency is equal to the product of 
the period and the amplitude of the frequency component at this frequency.  In other words: 
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and for a component at an angular frequency , this gives: 
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The inverse Fourier transform can be derived in a similar way, by considering that: 
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and since the summation is now over an infinite number of terms separated in frequency by an 
amount df = 1/T Hz, this can be expressed as: 
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This is the most-often quoted form of the inverse Fourier transform, at least in engineering. 

1.6.1 Energy in the Fourier Transform 

Since the Fourier transform considers signals that last for an infinite time, it makes more sense 
to talk about the energy in the signals, rather than the power.  The total energy in a signal can 
be expressed in the time domain as2: 

2Energy ( )x t dt




   

In the frequency domain, we must consider the derivation of the Fourier transform again.  The 
power in a small range of frequencies 1/T Hz was |cn|

2, and the energy is just the power 
multiplied by the time.  Therefore, integrating the power over all frequencies gives another 
expression for the energy in the signal: 
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Note that this provides a physical meaning for |X()|2, it is the energy spectral density in Joules 
per Hz. 

Setting these two expressions for energy equal to each other provides a useful expression 
known as Parseval’s theorem: 

                                                      
2 At least this is true when the signal is real.  If the signal is complex, it must be written 
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1.7 The Fourier Transform of Sampled Signals 

In many cases in signal processing, we are interested in a sampled version of a continuous 
signal: a signal that has a defined value only for a series of regularly spaced times.  This is 
what results from the process of analogue-to-digital conversion.  For example, consider the 
continuous function y(t) being digitised, and represented by the series of discrete samples yn, 
where the sample values yn are the values of y(t) at times nT. 

We can write the sampled version of the signal as: 

( ) ( )s n
n

y t y t nT   

that is, a series of impulses spaced a time T apart (so the sampling frequency, the rate of taking 
samples, is just 1/T).  We write it this way so that the area under the curve of the sampled 
version of the signal is finite – this means we can take the Fourier transform. 

To determine the Fourier transform of ys(t), we just apply the formula: 
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And this is very interesting… consider the value of Ys(+2/T): 
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since exp(-2n) = 1 for all integer values of n.  In other words, Ys() is a periodic signal.  It 
repeats exactly every 2/T rad/s, or 1/T Hz. 

A comparison between the original spectrum of y(t), and the spectrum of the sampled version 
ys(t) is shown below for two cases of interest (one solid line, one dotted). 
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Spectrum of y(t)

Spectrum of ys(t)

0 1/T Hz-1/T Hz

Spectrum of y(t)

Spectrum of ys(t)

0 1/T Hz-1/T Hz
 

Notice that in the case of the dotted line, the periodic (sampled) spectrums overlap.  This 
means it is impossible to filter out the effects of the sampling at any further processing stage: 
energy at two different frequencies in the original continuous waveform y(t) appears at the 
same frequency in the sampled version of the waveform ys(t).  This is the phenomenon known 
as aliasing. 

1.7.1 The Nyquist Sampling Theorem 

The Nyquist sampling theorem gives the minimum sampling rate required to avoid aliasing.  
As can be seen from the diagram above, the requirement is that the sampling frequency 1/T 
must be at least twice the maximum frequency of any energy in the continuous waveform. 

Since in most cases real continuous signals have energy that extends to very high frequencies, 
anti-aliasing filters are placed before analogue to digital convertors to remove these 
frequencies before the sampling process. 

 

1.8 A Useful Result from the Fourier Series 

One key result that is used in a few important derivations in communications theory is: 
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or its corollary in the frequency domain: 
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so it’s worthwhile highlighting the derivations of these results.  Here, I’ll just derive the first 
one: the second one can be obtained from the first one by just replacing t with , and T with 
2/ T.  (The equation doesn’t mind whether t is a time, or a frequency, or anything else: it’s 
still true.) 

This equation comes from considering the Fourier series of a set of delta functions repeating 
with period of T.  We can write: 
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where here: 
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and the final step is in noticing that it doesn’t matter if you add up from minus infinity to plus 
infinity, or add up from minus infinity to plus infinity, you get the same answer, so we can 
replace n with –m on the right hand side, and we get: 
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1.9 Examples of the Fourier Transforms 

The Fourier transform has some simple properties that are worth knowing.  They can all be 
derived from the form of the Fourier transform integral, and doing so is good practice in using 
these equations.  Some of the most common and useful ones are contained in the following two 
tables; I’ll put them here for reference purposes. 

1.9.1 Fourier Transform Properties 

Operation Signal Spectrum 
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1.9.2 Fourier Transforms of Some Common Signals 

Function  f t   F   
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16. Log Modulus t loge t  




 

17. Gaussian Pulse e t T 2 22  T e T2
2 2 2   
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1.10 Problems 

1) Express the co-efficients of the complex Fourier Series cn in terms of the co-efficients of the 
trigonometric Fourier Series an and bn. 

2) What is the trigonometric Fourier Series of a square wave, where the value is one for the 
first half of the period T, and zero for the second half? 

3) By considering the Fourier transform and Parseval’s theorem, evaluate: 
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4) Prove that if f(t) has the Fourier transform F(), then the Fourier transform of f(t – ) is 
F()exp(–jt). 
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5) Prove that if f(t) has the Fourier transform F(), then the Fourier transform of 
 df t

dt
 is 

(jF(). 

6) Derive the result for the Fourier transform of the rectangular pulse given in table above. 


